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Abstract 

As the trend to open up data and provide them freely on the Internet intensifies, the opportunities to create added value by 

combining and cross-indexing heterogeneous data at a large scale increase. To seize these opportunities we need infrastructure 

that is not only efficient, real-time responsive and scalable but is also flexible and robust enough to welcome data in any schema 

and form and to transparently relegate and translate queries from a unifying end-point to the multitude of data services that make 

up the open data cloud. Transparent relegation and translation relies on detailed and accurate data summaries and other data 

source annotations, and with increased data volumes and heterogeneity managing these annotations, it becomes by itself a 

challenging data problem. In this position paper we discuss (a) how a scalable and robust semantic storage can be developed, 

using indexing algorithms that can take advantage of resource naming conventions and other natural groupings of URIs to 

compress data source annotations about extremely large datasets; and (b) how query decomposition, source selection, and 

distributed querying methods can be designed, that take advantage of such algorithms to implement a scalable and robust 

infrastructure for data service federation. 

Keywords: Semantic Web; Metadata Publishing; Triple Store Compression; Resource Discovery 

1. Introduction 

During the last years, the trend to open up data and provide them freely on the Internet has intensified in volume 

as well as quality and value of the data made available. The linked data community has grasped the opportunity to 

combine, cross-reference, and analyse unprecedented volumes of high-quality data and to build innovative 

applications. This effort has caused a tremendous network effect, adding value and creating new opportunities for 

everybody, including the original data providers. 

But most of the low-hanging fruit has been picked and it is time to move on to the next step, combining, cross-

indexing and, in general, making the best out of all public data, regardless of their schema, size, and update rate; 

accepting that some schemas might be better suited to a given dataset and application and that there is no consensus 

about a "universal" schema or vocabulary for any given application, let alone for the Semantic Web and related 
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initiatives such as the LOD cloud. In other words, we need infrastructure that besides being efficient, real-time 

responsive, and scalable is also flexible and robust enough to allow data providers to publish in the manner and form 

that best suits their processes and purposes and data consumers to query in the manner and form that best suits 

theirs. 

This will be a decisive factor in maintaining the momentum of the linked open data movement by including in the 

cloud large, live, constantly updated datasets and streams that are published in formats that were not designed with 

linking across sources in mind. This will not only increase the value of all public data, but can also provide both the 

incentive and the opportunity to follow Semantic Web standards and linked data best practises for publishers that 

will not or cannot directly and immediately make this transition. 

In order to achieve this ambitious vision and solve a difficult data management problem, the following key 

challenges should be addressed: 

 Develop novel algorithms and methods for querying distributed triple stores, that can overcome the problems 

stemming from heterogeneity and from the fact that the distribution of data over nodes is not determined by the 

needs of better load balancing and more efficient resource discovery, but by data providers. 

 Develop scalable and robust semantic indexing algorithms that can serve detailed and accurate data summaries 

and other data source annotations about extremely large datasets. Such annotations are crucial for distributed 

querying, as they support the decomposition of queries and the selection of the data sources which each query 

component will be directed to. 

 Since it is, in the general case, not possible to align schemas and vocabularies so perfectly that there is no loss of 

information, investigate how to minimize losses and how to not accumulate them over successive schema 

translations. 

Agricultural resource management is a good example of a real-world situation where data-intensive analysis 

needs to combine information from different, large-scale sources that are actively maintained in incompatible 

schemata: the agricultural domain includes various different topics with subjects varying from plant science and 

horticulture, to agricultural engineering, to agricultural economics. These different subjects are extensively 

researched by scientists all over the world, consuming as well as producing an enormous volume of data;  

agricultural scientists are inundated by an abundance of data as well as reported results relevant to their research as 

much as their colleagues from different disciplines. 

To move towards these challenges, we propose to exploit the W3C POWDER protocol in order to maintain more 

detailed data summaries and data source annotations, and do at a larger scale than is possible today. 

The paper is structured as follows: First, we discuss issues related with the implementation of a POWDER triple 

store. Then, we discuss the related technologies required to improve such implementations, which include 

distributed querying, approximate ontology alignment and query rewriting. Moreover, we present the proposed 

overall architectural solution, and discuss experimental results measuring the performance of POWDER triple 

stores. Finally, we discuss our findings and the conclusions that can be offered. 

2. Implementing a POWDER Triple Store 

POWDER is a Semantic Web technology that takes advantage of natural groupings of URIs in order to annotate 

all the resources in a regular expression-delineated sub-space of the URI space. The use cases for POWDER are 

centred on machine-readable trust marks, disambiguation of subject matter, declarations of accessibility compliance, 

mobile-friendliness, on-line safety, and so on. These all share the need to make statements about (parts of) Web 

sites, which is a more generally recurring need. POWDER allows making explicit the intention behind URI 

structure, which goes beyond exhaustively annotating all resources in a domain as it also represents the knowledge 

that not only currently known, but also unknown and future resources within a given URI space will have the 

properties implied by their position in the URI structure. For example, POWDER allows us to express the 

knowledge that any resource, currently existing or added in the future, under http://red.com has value "red" for the 

ex:colour property. 

Compared to the ad-hoc formalisms and other standards fulfilling similar use cases such as robots.txt files, RFC 

5785, and the PICS protocol, POWDER offers greater flexibility in defining URI spaces (regular expressions as 

opposed to URI prefixes) and has a rigorously defined semantics [1] that affords it a well-defined position the 

Semantic Web architecture and interoperability with RDF applications. 
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POWDER has seen various implementations applied to different applications and domains, including publishing 

trust marks conferred by third-party authorities to on-line medical content [2] and repository compression [2;3]. All 

these implementations share the property of having very limited interaction with non-POWDER semantic data as 

POWDER results are combined with other data following a layered inference approach where POWDER statements 

contribute to semantic inference but not vice versa. 

Although implementing POWDER as a distinct layer is sanctioned by the formal semantics of POWDER 

statements, this direct implementation of POWDER semantics forces a choice between efficiency and compression. 

On the one hand, forward-chaining approaches either generate all POWDER-inferred triples and push those to the 

semantic inference layer above or implement a combined RDFS/POWDER inference engine [2] that, again, 

generates all POWDER and RDFS-inferred triples. Either way, any benefits POWDER can have to repository 

compression are lost since the POWDER-inferred triples are made explicit. On the other hand, backward-chaining 

approaches such as query rewriting achieve compression at the expense of efficiency. Query rewriting operates by 

transforming triple patterns involving POWDER-inferred predicates into equivalent FILTER clauses which apply 

the regular expression that the resource must match for the predication to hold. As a result, and as previously noted 

by Konstantopoulos and Archer [3], even the most restrictive POWDER statements can never be used to guard a 

query but can only be applied as tests over resources selected by previous triple patterns. 

To fully realize the potential of POWDER we need to re-think some of the fundamental assumptions made when 

designing triple stores and databases in general. The BTree is the data structure that underlies modern triple stores 

and relational databases, coupled with hash tables that index the externally visible values against the internal node 

IDs. These data structures support the following strategy when searching for a triple pattern (or, in general, a tuple): 

 The bound values in the triple are looked up in the hash table and replaced with internal node IDs 

 The node IDs in the tuple are looked up in the BTree 

 The unbound variables are bound by the values retrieved from the BTree 

This strategy is very efficient when the variables in query patterns are bound to full URIs, but breaks down when 

retrieving POWDER annotations, as explained in the below sections. 

2.1. Retrieving Resources by Property 

Let us assume that we are looking for all resources that have a given property. Current approaches maintain two 

or more BTrees for looking up the properties of a given resource (spo indexing) or the resources that have a given 

property (pos indexing) using the strategy outlined above. But no index of nodes that correspond to specific 

resources or values can efficiently retrieve all resources that have a given POWDER-inferred property, without 

testing every single URI in the knowledge base against the regular expression. 

One possibility would be to maintain in the structure all (relevant to POWDER statements) regular expressions a 

node's URI matches. Besides the large space usage (effectively annulling any compression benefits from POWDER) 

this would require prohibitive population costs for adding a POWDER statement to a large repository, since every 

single URI would have to be visited and checked against the new statement's regular expression. It becomes obvious 

that to efficiently implement POWDER processing we need to also be able to efficiently retrieve all URIs that match 

a regular expression. 

2.2. Retrieving Properties of Resources 

Let us now assume that we are looking for the filler of a POWDER-assigned property when the subject is bound 

to a URI. We look up the URI in the hash table, but we find no explicit triples in the tree. A possible solution would 

be to have regular expressions themselves be the subject in the tree, and have the hash table return not only the 

internal ID of the URI, but also the internal IDs of all matching regular expressions. This is sub-optimal because it 

(a) dramatically increases population costs (every single entry in the hash table needs to be revisited and updated 

when a new POWDER statement is added) and (b) increases querying time by causing unnecessary regular 

expression tests. 
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3. Source Selection and Distributed Querying 

Repository federation and distributed querying are key technologies for efficient and scalable large-scale 

semantic repositories. The support for federated querying in most major repository implementations will be 

formalized in the upcoming SPARQL 1.1 specification. The new specification does not target federation that is 

transparent to the user, which is an open research question, but will include the SERVICE keyword through which 

query authors can specify which repositories to query about each triple pattern in the query. 

Among the various approaches to optimizing distributed repositories, many target homogeneous databases where 

the same kind of information is stored across all nodes of the system using the same (or compatible) schema. 

Furthermore, such approaches typically require control over the way triples are hashed over the cluster, in order to 

optimize the distribution of triples in such a way that inter-node communication is minimized [4]. Although this 

level of control allows considerable optimizations, more dynamic solutions are needed as well as many real-world 

use cases: the ability to formally describe and take into account a prior and externally imposed data partitioning that 

the system does not control. 

In the literature, several systems maintain indexes of the (kinds of) information stored at each source. Schema-

level indexes are light-weight indexes of the properties and types (classes) that occur at each source [5]. Although 

efficient to maintain, such indexes are too coarse as they are missing instance-level information. So, for example, 

looking up repositories based on classes and properties from commonly used vocabularies (e.g., FOAF in general or 

AGROVOC in the agricultural domain) will return many false positives and thwart meaningful optimization. 

Data summaries, on the other hand, combine schema and instance-level indexing to perform source selection. 

These stem from database concepts such as histograms, capturing statistics on selectivity and cardinality for the 

purpose of query optimization [6]. In order to index statistics about RDF triples, Q-Trees [7] combine the notion of 

histograms with that of R-Trees [8], multi-dimensional trees typically used to index spatial data. The core idea is 

that a hash function maps URIs and values to numerical “coordinates” that are used to find the node(s) in the Q-Tree 

corresponding to a (possibly only partially instantiated) triple pattern. Each such node aggregates statistics about all 

triples within its “bounding box”; this statistics is a ranked list of sources where data should be looked up. 

The geometric metaphor employed by Q-Trees works well with heterogeneous data and is also robust to slightly 

outdated indexes [9]. However (a) does not allow for explicit declarations by repository maintainers regarding the 

kinds of data their repositories contain, but only relies on indexes incrementally built and maintained by successive 

queries; (b) fails take into account the semantic similarity between resources and relies instead on a purely syntactic 

mapping from URIs and value strings to numerical coordinates. In fact, the method is known to be very sensitive to 

the hashing function, with no universally good function found [7]; (c) fails to intelligently break up buckets when 

capacity is exceeded, relying on simple area-minimizing strategies 

Query results from the end-points involved in a complex query are transformed back into the schema of the 

original query and joined. As interdependences between the sub-queries can degenerate this process into a situation 

where massive data volumes need to be copied to and processed by the results collector, the proposed solution 

builds upon methods for approximately joining distributed query results [4] and for distributed and approximate 

inference. 

4. Approximate Ontology Alignment and Query Rewriting 

The thorny issue of integrating heterogeneous information sources is open for the database community until 

today. Within the Semantic Web, and following the results of FP6-IST Knowledge Web [10], the problem of 

ontology alignment is defined as that of finding the correspondences between the entities (classes, properties, 

instances) of two ontologies. Each correspondence can be a relation between one entity from one ontology and one 

entity from another (1-1 correspondence) or between sets of entities (m-n correspondence); correspondences also 

carry a type (e.g. equivalent, subsumes, overlaps, etc.) and a degree of confidence. 

4.1. Method Selection and Synthesis 

When aligning heterogeneous information sources one has to cope with various phenomena that go beyond 

discovering the mapping between vocabulary terms, including expressivity differences (full ontologies vs. thesauri 
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or flat vocabularies of terms), granularity differences, etc. Furthermore, the process is affected by the 

correspondence types that are interesting to the application and the type of information made available to the 

alignment methods. 

From the perspective of alignment methods, these adopt techniques from formal reasoning, graph analysis, 

machine learning, and language technology, and exploit different features of the ontologies including structural 

similarity between the graphs themselves, lexical similarity between the linguistic terms that lexicalize ontology 

entities, or semantic similarity discoveries via matching instances or the co-occurrence and frequencies of terms 

related to ontology entities. Selecting the best alignment method for a given pair of ontologies and target 

correspondence relations is done through an analytic hierarchy process [11], ad hoc rules [12], or measuring 

similarity in a representation designed to capture pertinent semantic and structure information [13]. 

Naturally, different methods exploit different types of information or different facets of the same information, 

consult (or not) different external resources, and target different types of correspondences. As a result, there is often 

no optimal method even for a given pair of ontologies; a synthesis, however, can make the best of multiple methods 

and producing an alignment that outperforms each of its individual constituents. 

Many state of the art systems [14] combine method selection and synthesis into a biased synthesis approach 

where the correspondences discovered by multiple alignment methods are combined applying metrics of preference. 

Model-based approaches have individual methods provide results to a generic model that weights and integrates 

them using a specific computational model. Such a model is for example provided by a least square linear regression 

[15] or machine learning methods such as AdaBoost [16]. Recent model-based approaches view constituent methods 

as interacting agents, each responsible for using a specific alignment method to make alignment decisions. Synthesis 

is, then, viewed as the well-studied problem of maximizing social welfare, the sum of the utilities of the individual 

agents [17]. 

It is interesting to note that this latter method assures the consistency of the final result by taking into account the 

semantics of the schema language (e.g., OWL, RDFS) used by the aligned ontologies. This brings into focus the 

more general pattern of using meta-information about the ontologies under alignment in order to handle the syntactic 

and structural variation that can be encountered in a dynamic setting like the one examined in this paper aligning 

semantic resources often requires specific configuration and tuning for making them truly accessible and 

comparable and for setting appropriate exactness and accuracy expectations for the outcome of the process.  

The idea is not new: as early as 2001 the FIPA Ontology Services Specification featured an Ontology Agent 

Ontology, a vocabulary that facilitated communication between ontology agents by providing metadata such as the 

knowledge representation schema which each ontology agent adhered to and W3C published the Web Service 

Definition Language for abstractly describing data and processing network services. More recently, the RDFStats 

Vocabulary [18] formalizes the publishing of histograms and other data summaries of RDF stores, but such 

information is also useful for alignment methods that exploit entity frequencies to discover mappings. The W3C 

Vocabulary of Interlinked Datasets (VoID) is designed with resource discovery and dataset archiving and 

cataloguing in mind and focuses on provenance information, but also defines terms for describing the links across 

datasets. Finally, the on-going W3C OntoLex activity is developing models for representing the linguistic 

knowledge (lexical, morphosyntactic, semantic, and pragmatic) required to realize ontological entities in different 

natural languages. Although OntoLex resources can be valuable for language technology-based alignment methods, 

the activity is not targeting alignment and does not intend to cover other aspects of ontology meta-information. 

Although these vocabularies were originally developed for purposes other than support ontology alignment, they 

both establish frameworks and define vocabulary items that data providers can use to annotate their datasets for the 

purposes of configuring alignment. 

However, no standardization initiative has established a unified and universally recognizable schema for 

ontology mediation. 

4.2.  Method Application and Evaluation 

A reliable method for quantifying alignment quality can greatly improve performance, as it will allow source 

selection to prefer those data sources that can most accurately respond to the query. Alignment evaluation borrows 

from information retrieval the concepts of precision and recall, to propose their semantic variations [19] and also 

applies context-specific measures similar to the measures used in evaluating ontology learning methods [20]. 
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Although alignment evaluation in general remains an open issue, given sufficient meta-information to properly 

tune and configure the system, a sufficient approximation can be computed for the purposes of source selection. 

Furthermore, it is foreseen that alignment results are used not only to map queries to the vocabulary of the data 

source, but also to translate query results back to the schema of the original query. Although straight-forward for 1-1 

mappings, this process gets dramatically convoluted for m-n mappings and perfect precision and recall is practically 

impossible as it often requires background knowledge that lies outside the formal conceptualization captured by the 

repository schemata. Recent work in the context of FP7-ICT SYNC3, views pattern translation as an inference 

process. This approach can contribute significant space and time optimization in storing and applying such 

translations patterns [21]. 

5. Proposed Architectural Solution 

The proposed solution is to offer SPARQL endpoints that federate SPARQL endpoints over heterogeneous and 

diverse data sources, as depicted in Figure 1, which presents the proposed overall architecture. 

The resource discovery and query decomposition component analyses SPARQL queries and uses metadata about 

the schema used and the instances stored in the various federated data stores in order to break up the original query 

into the optimal query fragments and decide where to forward each such fragment for execution. “Optimal” in this 

context involves a multitude of considerations, including minimizing the number of fragments (since joining the 

results carries considerable computational costs), schema proximity (minimizing the schema translation needed) and 

load balancing (preferring less used repositories). 

The resource discovery and query decomposition mechanism relies on using POWDER to mass-annotate large 

sub-spaces of the URI space, allowing the system to take advantage of naming convention regularities to compress 

its indexes. POWDER can concisely annotate regular-expression delineated URI spaces with a single statement, 

affording efficiency and scalability in storing and maintaining data summaries. The decomposition rules of the 

system are refined during system operation by comparing the results that are returned against the system's 

expectations. 

 

Fig. 1. Architecture of the proposed solution 

The result of this process is a partitioning of the triple patterns in the original query where each fragment is 

annotated with an ordered list of data sources from the most likely to contain relevant data downwards. Resource 

discovery is by necessity an approximation, since completeness can only be guaranteed by querying all sources, but 

our method exhibits pay-as-you-go behaviour: the application posing the query can decide how much time it is 
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possible and worth it to wait to get more results, or set the minimum number of results required, or apply some other 

similar policy balancing between completeness and effort. 

The federated end-point wrapper is responsible for managing the distributed querying and joining the results. 

Where necessary, ontology alignment results are used to transform the vocabulary of the query into the vocabulary 

of the data source. As schemas and vocabularies do not always align perfectly, due to overlaps between concepts, 

difference in the granularity of the conceptualization, etc., this is an approximate process involving computational 

intelligence rules that refine query terms to map them unto source vocabulary terms. These rules can exploit 

contextual information (e.g., previous queries by this user) in order to refine the query to the level needed by the 

source schema. 

Query results are transformed back into the schema of the original query and joined by the federated end-point 

wrapper. As interdependences between the sub-queries can degenerate this process into a situation where massive 

data volumes need to be copied to and processed by the results collector, the system will develop methods for 

approximately joining distributed query results. We envisage a join operator that employs heuristics to exhibit pay-

as-you-go behaviour, providing a first approximation with minimal usage of computational resources and iteratively 

refining it if more computation time and space are warranted by the application. 

The system also foresees update and maintenance cycles, where new end-points are added to the federation or 

update the schema they employ or have accumulated considerable changes in the instances they hold. Schema 

metadata must be provided by the data provider when joining the federation, using authoring tools and tutorials 

produced by the project. Instance metadata may also be provided, but are also automatically maintained by the 

resource discovery module based on statistics extracted from query results. The rules and metadata used to achieve 

query transformation are derived by ontology alignment methods as well as human supervision. 

6. Empirical experimentation of current POWDER implementations 

Empirical experimentation on the space compression and the computation efficiency of current POWDER 

implementations has been carried out in the context of FP7-ICT SYNC3 [3] and has shown POWDER to achieve 

moderate compression rates (at the order of 20%) at no computational expense.SYNC3 extracts metadata about 

news events from on-line news content at a rate of 38Mtriples per month. The current system instance has been 

operating since April 2011 and has roughly reached 300Mtriple. It should be noted, however, that the SYNC3 

repository deploys a POWDER implementation that only supports the constructs foreseen in the POWDER 

Recommendation, using regular expression matching to assign fixed property values to resources; and that the 

SYNC3 schema is only moderately amenable to POWDER compression. 

Table. 1. Two LUBM Query Examples 

LUBM Query A LUBM Query B 

SELECT ?X WHERE { 

?X rdf:type 

 lubm:UndergraduateStudent . 

} 

 

SELECT ?X ?Y WHERE { 

  ?X rdf:type lubm:Student . 

  ?Y rdf:type lubm:Course . 

  data:Department0.University0.edu/AssociateProfessor0 

    lubm:teacherOf ?Y . 

  ?X lubm:takesCourse> ?Y . 

} 

To better understand the strengths and weaknesses of current POWDER implementations we have conducted 

further experiments with a 500 Megatriple repository generated using the Lehigh University Benchmark (LUBM). 

Two variations of this dataset were prepared, one containing all RDF data and one where rdf:type information that 

can be inferred from the URI was removed; for example: 

data:UnderGraduateStudent0 rdf:type lubm:UnderGraduateStudent . 

data:Department0.University0.edu/AssociateProfessor0 rdf:type lubm: AssociateProfessor . 
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Queries on this latter repository were executed via the backward-chaining SYNC3 POWDER implementation 

that applies backward-chaining inference to rewrite POWDER-inferable triple patterns in queries into equivalent 

FILTER clauses applying the regular expressions specified by the POWDER document that describes the data. 

 

Fig. 2. Performance in query example A 

Results for the two queries on Table 1 are shown in Figures 2 and 3. The data sizes quoted in these figures 

assume that the POWDER repository holds data summaries at the, relatively dense, ratio of 1:100. That is, 1 triple 

with meta-information is held in the query decomposition and data selection node for every 100 triples in the 

distributed data sources. The times quoted reflect the increase in the time it takes to pre-process queries before the 

can be distributed as the end-point federation grows larger. 

 

Fig. 3. Performance in query example B 

Query A is a high-throughput query that yields a number of tuples directly proportional to repository size; 

POWDER has no practical effect on these types of queries, especially since there is no non-POWDER pattern to 

guard the query. Query B is a query about a specific resource with a fixed throughput regardless of repository size; 

POWDER has a more profound effect since two out of the three triple patterns in the query (the two rdf:type 

patterns) do not result in a lookup in the index but are satisfied by matching the bindings of the ?X and ?Y variables 

against regular expressions; the existence of  very restrictive guards (patterns with grounded resources) maximizes 

the benefit from POWDER. 

Naturally, since the computation needed to match the regular expression does not depend on the size of the 
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repository but only on the number and complexity of POWDER descriptions, POWDER vs. vanilla performance 

over Query B diverges as the repository grows bigger. In other words, POWDER achieves scalability by loosening 

the association between the time it takes to annotate resources ?X and ?Y from the size of the repository. 

Two factors should be noted when projecting the efficiency of a naïve POWDER store: 

 The naïve POWDER store will dramatically improve performance on Query A-type queries. 

 Neither the SYNC3 not the LUBM schema, are well-suited for drastic compression under the currently 

implemented expressivity. 

Especially with respect to this latter point, the naïve POWDER store will allow more extensive use of regular 

expressions by using them to compute property values instead of only permitting regular expression recognizers. So, 

for example, the LUBM URI convention would be better exploited inferring further properties besides the type, such 

as the university and department where they are employed, from resources such as: 

data:Department0.University0.edu/AssociateProfessor0 

Such a mapping formalism will be particularly useful in source selection and ontology alignment, and especially 

for instance-based meta-information. Consider, for example, the following URIs: 

http://www.geonames.org/264371/athens.html 

http://dbpedia.org/page/Athens 

and the opportunity and extended POWDER implementation offers to succinctly describe the first guess one 

would make to generate the latter from the former. Such a description can reduce great volumes of triples of 

mapping knowledge to a single statement and a handful of exceptions, such as 

http://www.geonames.org/ 4180386/athens.html 

http://dbpedia.org/page/Athens,_Georgia 

It is, thus, expected that the compression achieved can reach the order of 90% with querying time growing at a 

sub-linear rate against total data volume, resembling Figure 3 rather than Figure 2. 

7. Conclusions & Future Work 

In this position paper we discuss (a) how a scalable and robust semantic storage can be developed, using indexing 

algorithms that can take advantage of resource naming conventions and other natural groupings of URIs to compress 

data source annotations about extremely large datasets; and (b) how query decomposition, source selection, and 

distributed querying methods can be designed, that take advantage of such algorithms to implement a scalable and 

robust infrastructure for data service federation. 

Future work includes the development of  a distributed infrastructure layer on top of existing data repositories 

and networks that will support the interoperable and transparent application of data-intensive techniques over 

heterogeneous data sources. This infrastructure will integrate: 

 Novel indexing algorithms that support the efficient storage and retrieval of data summaries that concisely 

describe instance-level metadata about the different sources federated under the infrastructure. It is envisaged 

that such algorithms will support advanced source selection methods over distributed databases, affording 

scalability by disassociating or sub-linearly associating the time it takes to decide which repository to ask for a 

given piece of information from the number and size of the repositories that the distributed system comprises. 

 An extension of state-of-the-art query decomposition and rewriting methods that will enable complex queries in 

one schema to be broken down into sub-queries, each in a (possibly) different schema. In synergy with the 

distributed source selection mechanisms, this will allow queries in any schema to be executed at all and only 

those repositories that might hold relevant information, regardless of the schema these repositories use. 

 The integration of a variety of state-of-the-art schema alignment methods under a novel architecture for the prior 

selection of the most appropriate method or methods for a given schema pair, the synthesis of multiple methods 

into a unified alignment, and the posterior evaluation of alignment quality. Alignment results will be used at 

querying time to rewrite queries (or query fragments) from the query schema into the source schema and results 

from the source schema back into the query schema. 
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